NCERT Solutions For Class 9 Math Chapter – 2 Exercise – 2.4
Q1. Determine which of the following polynomials has (x+1) a factor:
- X3+ x2 + x + 1
Solution:-
P(-1) = (-1)3 + (1)2 + (-1) + 1
= -1 + 1 – 1 + 1
= 0
- X4+ x3 + x2 + x + 1
Solution:-
P(-1) = (-1)4 + (-1)3 + (-1)2 + (-1) + 1
P (-1) = 1
- X4+ 3x3 + 3x2 + x + 1
Solution:-
P(-1) = (1-)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
= 1
- X3– x2 – (2+√2)x + √2
Solution:-
P(-1) = (-1)3 – (-1)2 – (2+√2)(-1) + √2 = -1 -1 + 2 + √2 + √2
= 2√2
Q2. Use the factor theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
- P(x) = 2x3 + x2 – 2x – 1 , g(x) = x+ 1
Solution:-
P(x) 2x3 + x2 – 2x – 1 g(x) = x +1
G(x) = 0
X + 1 = 0
X = -1
P(-1) 2(-1)3 + (-1)2 – 2(-1) -1
= -2 + 1 + 2 – 1
= 0
- P(x) = x3+ 3x2 + 3x + 1 , g(x) = x+ 2
Solution:-
G(x) = x + 2 = 0
X = -2
P(-2) = (-2)3 + 3(-2) + 1
= -8 + 12 – 6 + 1
= -1
- p(x) = x3– 4x2 + x + 6 g(x) = x – 3
Solution:-
P(x) = x3 – 4x2 + x + 6
G(x) = 0
X – 3 = 0
X = 3
P(3) = (3)2 – 4(3)2 + (3) + 6
= 27 – 36 + 3 + 6
= 0
Q3. Find the value of k , if x – 1 is a factor of p(x) in each of the following cases:
- P(x) = x2+ x + k
Solution:-
X – 1 = 0
X = 1
By factor theorem
(1)2 + (1) + k = 0
1 + 1+ k = 0
2 + k = 0
K = -2
- p(x) = 2x2+ kx + √2
Solution:-
X – 1 = 0
X = 1
2(1)2 + k(1) + √2 = 0
2 + k + √2 = 0
K = -(2 + √2)
- P(x) = kx2– √2x + 1
Solution:-
K(1)2 – √2(1) + 1 = 0
K = √2 – 1
- P(x) = kx2– 3x + k
Solution:-
K(1)2 – 3(1) + k = 0
K – 3 + k = 0
2k – 3 = 0
K= 3/2
Q4. Factorize:
- 12x2– 7x + 1
Solution:-
12x2 – 7x + 1 = 12x2 – 4x – 3x + 1
4x(3x-1) -1 (3x-1)
(4x-1) (3x-1)
- 2x2+ 7x + 3
Solution:-
2x2 + 7x + 3
2x2 + 6x + 1x + 3
2x(x+3) + 1(x+3)
(2x+1)(x+3)
- 6x2+ 5x – 6
Solution:-
6x2 + 5x – 6
6x2 + 9x – 4x – 6
= 3x(2x+3) -2(2x+3)
= (2x+3)(3x-2)
- 3x2– x- 4
Solution:-
3x2 – x – 4
3x2 – 4x + 3x – 4
X(3x-4) +1 (3x – 4)
(3x-4)(x+1)
Q5. Factorize:
- X3+ 2x2 – x+ 2
Solution:-
P(x) = x3 – 2x2 – x + 2
P(-1) = (-1)3 -2(-1)2 – (-1) + 2
= 0
Now , Dividend = Divisor x Quotient + Remainder
(x+1)(x2 – 3x + 2) = (x+1)(x2 – x – 2x + 2)
= (x+1)(x(x-1)-2(x-1))
= (x+1) (x-1) (x-2)
- X3– 3x2 – 9x – 5
Solution:-
P(x) = x3 – 3x2 – 9x – 5
P(5) = 0
So , (x-5) is factor of p(x)
Now ,
P(x) = x3 – 3x2 – 9x – 5
P(5) = (5)3 – 3(5)2 – 9(5) – 5
= 125 – 75 – 45 – 5
= 0
Therefore , (x-5) is the factor of p(x)
(x-5)(x2 + 2x + 1) = (x-5)(x2 + x + x + 1)
= (x-5)(x(x+1)+1(x+1))
= (x-5)(x+1)(x+1)
- x3+ 13x2 + 32x + 20
Solution:-
P(x) = x3 + 13x2 + 32x + 20
P(-1) = (-1)3 + 13(-1)2 + 32(-1) + 20
= -1 + 13 – 32 + 20
= 0
Therefore , (x+1) is the factor pf p(x)
(x+1)(x2 + 12x + 20) = (x+1)(x2 + 2x 10x + 20)
(x-5)x(x+2)+10(x+2)
(x-5)(x+2)(x+10)
- 2y3+ y2 – 2y – 1
Solution:-
P(y) = 2y3 + y2 – 2y – 1
P(1) = 2(1)3 + (1)2 – 2(1) – 1
= 2 + 1 – 1
= 0
Therefore (y-1) is the factor of p(y)
(y-1)(2y2 + 3y + 1) = (y-1)(2y2 + 2y + y + 1)
= (y-1)(2y(y+1)+1(y+1))
= (y-1)(2y+1)(y+1)