NCERT Solutions For Class 10 Math Chapter – 14 Exercise – 14.2

NCERT Solutions For Class 10 Math Chapter – 14 Exercise – 14.2

 

  1. The following table shows the ages of the patients admitted in a hospital during a year:
Age (in years) 5-15 15-25 25-35 35-45 45-55 55-65
Number of patients 6 11 21 23 14 5

Find the mode and the mean of the data given above. Compare and interpret the two
measures of central tendency.

Solution:

To find out the modal class, let us the consider the class interval with high frequency

Here, the greatest frequency = 23, so the modal class = 35 – 45,

l = 35,

class width (h) = 10,

fm = 23,

f1 = 21 and f2 = 14

The formula to find the mode is

Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h

Substitute the values in the formula, we get

Mode = 35+[(23-21)/(46-21-14)]×10

Mode = 35+(20/11) = 35+1.8

Mode = 36.8 year

So the mode of the given data = 36.8 year

Calculation of Mean:

First find the midpoint using the formula, x= (upper limit +lower limit)/2

Class Interval Frequency (fi) Mid-point (xi) fixi
5-15 6 10 60
15-25 11 20 220
25-35 21 30 630
35-45 23 40 920
45-55 14 50 700
55-65 5 60 300
Sum fi = 80 Sum fixi = 2830

The mean formula is

Mean = x̄ = ∑fixi /∑fi

= 2830/80

= 35.37 years

Therefore, the mean of the given data = 35.37 years

  1. The following data gives the information on the observed lifetimes (in hours) of 225
    electrical components:
Lifetime (in hours) 0-20 20-40 40-60 60-80 80-100 100-120
Frequency 10 35 52 61 38 29

Determine the modal lifetimes of the components.

Solution:

From the given data the modal class is 60–80.

l = 60,

The frequencies are:

fm = 61, f1 = 52, f2 = 38 and h = 20

The formula to find the mode is

Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h

Substitute the values in the formula, we get

Mode =60+[(61-52)/(122-52-38)]×20

Mode = 60+((9 x 20)/32)

Mode = 60+(45/8) = 60+ 5.625

Therefore, modal lifetime of the components = 65.625 hours.

  1. The following data gives the distribution of total monthly household expenditure of 200
    families of a village. Find the modal monthly expenditure of the families. Also, find the
    mean monthly expenditure:
Expenditure Number of families
1000-1500 24
1500-2000 40
2000-2500 33
2500-3000 28
3000-3500 30
3500-4000 22
4000-4500 16
4500-5000 7

Solution:

Given data:

Modal class = 1500-2000,

l = 1500,

Frequencies:

fm = 40 f1 = 24, f2 = 33 and

h = 500

Mode formula:

Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h

Substitute the values in the formula, we get

Mode =1500+[(40-24)/(80-24-33)]×500

Mode = 1500+((16×500)/23)

Mode = 1500+(8000/23) = 1500 + 347.83

Therefore, modal monthly expenditure of the families = Rupees 1847.83

Calculation for mean:

First find the midpoint using the formula, x=(upper limit +lower limit)/2

Let us assume a mean, A be 2750

Class Interval fi xi di = xi – a ui = di/h fiui
1000-1500 24 1250 -1500 -3 -72
1500-2000 40 1750 -1000 -2 -80
2000-2500 33 2250 -500 -1 -33
2500-3000 28 2750 0 0 0
3000-3500 30 3250 500 1 30
3500-4000 22 3750 1000 2 44
4000-4500 16 4250 1500 3 48
4500-5000 7 4750 2000 4 28
fi = 200 fiui = -35

The formula to calculate the mean,

Mean = x̄ = a +(∑fiui /∑fi)×h

Substitute the values in the given formula

= 2750+(-35/200)×500

= 2750-87.50

= 2662.50

So, the mean monthly expenditure of the families = Rupees 2662.50

  1. The following distribution gives the state-wise teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures
No of Students per teacher Number of states / U.T
15-20 3
20-25 8
25-30 9
30-35 10
35-40 3
40-45 0
45-50 0
50-55 2

Solution:

Given data:

Modal class = 30 – 35,

l = 30,

Class width (h) = 5,

fm = 10, f1 = 9 and f2 = 3

Mode Formula:

Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h

Substitute the values in the given formula

Mode = 30+((10-9)/(20-9-3))×5

Mode = 30+(5/8) = 30+0.625

Mode = 30.625

Therefore, the mode of the given data = 30.625

Calculation of mean:

Find the midpoint using the formula, x=(upper limit +lower limit)/2

Class Interval Frequency (fi) Mid-point (xi) fixi
15-20 3 17.5 52.5
20-25 8 22.5 180.0
25-30 9 27.5 247.5
30-35 10 32.5 325.0
35-40 3 37.5 112.5
40-45 0 42.5 0
45-50 0 47.5 0
50-55 2 52.5 105.5
Sum fi = 35 Sum fixi = 1022.5

Mean = x̄ = ∑fixi /∑fi

= 1022.5/35

= 29.2

Therefore, mean = 29.2

  1. The given distribution shows the number of runs scored by some top batsmen of the world in one- day international cricket matches.
Run Scored Number of Batsman
3000-4000 4
4000-5000 18
5000-6000 9
6000-7000 7
7000-8000 6
8000-9000 3
9000-10000 1
10000-11000 1

Find the mode of the data.

Solution:

Given data:

Modal class = 4000 – 5000,

l = 4000,

class width (h) = 1000,

fm = 18, f1 = 4 and f2 = 9

Mode Formula:

Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h

Substitute the values

Mode = 4000+((18-4)/(36-4-9))×1000

Mode = 4000+(14000/23) = 4000+608.695

Mode = 4608.695

Mode = 4608.7 (approximately)

Thus, the mode of the given data is 4608.7 runs

  1. A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarized it in the table given below. Find the mode of the data:
Number of cars Frequency
0-10 7
10-20 14
20-30 13
30-40 12
40-50 20
50-60 11
60-70 15
70-80 8

Solution:

Given Data:

Modal class = 40 – 50, l = 40,

Class width (h) = 10, fm = 20, f1 = 12 and f2 = 11

Mode = l+ [(fm-f1)/(2fm-f1-f2)]×h

Substitute the values

Mode = 40+((20-12)/(40-12-11))×10

Mode = 40 + (80/17) = 40 + 4.7 = 44.7

Thus, the mode of the given data is 44.7 cars