NCERT Solutions For Class 10 MATH Chapter – 8 Exercise – 8.2
Q1. Evaluate the following:
- Sin 600Cos 300 + Sin 300 Cos 600
- 2 tan2450+ cos2 300 – sin2 600
- Cos 450/(sec 300+ cosec 300)
- (sin 300+ tan 450 – cosec 600)/(sec 300 + cos 600 + cot 450)
- (5 cos2600 + 4 sec2 300 – tan 2 450)/(sin2300 + cos2 300 )
Solution:-
- (√3/2 x √3/2) + (1/2 x 1/2)
= 3/4 + 1/4
= 4/4
= 1
- 2(1)2+ (√3/2)2 – (√3/2)2
= 2
- 1/√2/(2/√3 + 2)
= 1/√2/(2 + 2√3)/√3)
= (3√2 – √6)/8
- (1/2 + 1 – 2/√3)/(2/√3 +1/2+1)
(43-24√3)/11
- 5(1/2)2+ 4(2/√3)2 – 12 / (1/2)2 + (√3/2)2
= 67/12
Q2. Choose the correct option and justify your choice:
- 2tan300/1+tan2300=
- Sin 600(b) cos 600 © tan 600 (d) sin 300
- 1 – tan2450/1+tan2450=
- Tan 900(b) 1 © sin 450 (d) = 0
- Sin 2A = 2 sin A is true when A =
- O0(b) 300 ( c ) 450 (d) 600
- 2tan300/1-tan2300=
- Cos 600(b) sin 600 © tan 600 (d) sin 300
Solution:-
- A is correct option.
- D is correct option.
- A is correct option.
- C is correct option.
Q3. If tan ( A + B) = √3 and tan (A – B) = 1/√3 Find A and B.
Solution:-
Tan (A + B) = √3
Tan ( A + B) = Tan 600
(A + B) = 600 (I)
Tan (A – B) = 1/√3
Tan ( a – b) = tan 300
- b) = 300(ii)
Adding (I) and (ii) we get,
A + b + a – b = 600 + 300
2A = 900
A = 450
Putting the values of A in equation (I)
450 + B = 600
B = 600 – 450
B = 150
Thus A = 450 and B = 150
Q4. State whether the following are true or false . Justify your answer.
- Sin ( A + B) = Sin a + sin b
- The value of sin θincreases as θ increases
- The value of cos θincreases as θ
- Sin θ= Cos θ for all the values of θ.
- Cot A is not defined for A = 00.
Solution:-
- False
- True
- False