Miscellaneous Exercise page: 81
Prove that:
1.
Solution:
We get
= 0
= RHS
2. (sin 3x + sin x) sin x + (cos 3x – cos x) cos x = 0
Solution:
Consider
LHS = (sin 3x + sin x) sin x + (cos 3x – cos x) cos x
By further calculation
= sin 3x sin x + sin2 x + cos 3x cos x – cos2 x
Taking out the common terms
= cos 3x cos x + sin 3x sin x – (cos2 x – sin2 x)
Using the formula
cos (A – B) = cos A cos B + sin A sin B
= cos (3x – x) – cos 2x
So we get
= cos 2x – cos 2x
= 0
= RHS
3.
Solution:
Consider
LHS = (cos x + cos y) 2 + (sin x – sin y) 2
By expanding using formula we get
= cos2 x + cos2 y + 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y
Grouping the terms
= (cos2 x + sin2 x) + (cos2 y + sin2 y) + 2 (cos x cos y – sin x sin y)
Using the formula cos (A + B) = (cos A cos B – sin A sin B)
= 1 + 1 + 2 cos (x + y)
By further calculation
= 2 + 2 cos (x + y)
Taking 2 as common
= 2 [1 + cos (x + y)]
From the formula cos 2A = 2 cos2 A – 1
4.
Solution:
LHS = (cos x – cos y) 2 + (sin x – sin y) 2
By expanding using formula
= cos2 x + cos2 y – 2 cos x cos y + sin2 x + sin2 y – 2 sin x sin y
Grouping the terms
= (cos2 x + sin2 x) + (cos2 y + sin2 y) – 2 (cos x cos y + sin x sin y)
Using the formula cos (A – B) = cos A cos B + sin A sin B
= 1 + 1 – 2 [cos (x – y)]
By further calculation
= 2 [1 – cos (x – y)]
From formula cos 2A = 1 – 2 sin2 A
5. sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
Solution:
6.
Solution:
7.
Solution:
8. Find sin x/2, cos x/2 and tan x/2 in each of the following:
Solution:
cos x = -3/5
From the formula
9. cos x = -1/3, x in quadrant III
Solution:
10. sin x = 1/4, x in quadrant II
Solution: