NCERT Solution For Class 8 Math Chapter – 14 Factorisation Exercise – 14.1
Q1. Find the common factors of the given terms.
- 12x , 36
- 22x
- 14pq , 28p2q2
- 2x , 3x2, 4
- 6 abc , 24ab2 , 12a2b
- 16 x3, -4x2 , 32x
- 10pq , 20qr , 30 rp
- 3x2y3, 10x3y2 , 6x2y2z
Solution:-
- Factors of 12x and 36
2x = 2 x 2 x 3 x x
36 = 2 x 2 x 3 x 3
Common factors of 12x and 36 are 2,3,2
And 2 x 2 x 3 = 12
- Factors of 2y and 22xy
2y = 2xy
22xy = 2 x 11 x x x y
Common factors of 2y and 22xy are 2,y
And , 2xy = 2y
- Factors of 14pq and 28p2q
14pq = 2 x 7 x pq
28p2q = 2 x 2 x 7 x p x p x q
Common factors of 14pq and 28p2q are 2.7,p,q
And 2 x 7 x p x q = 14pq
- Factors of 2x , 3x2and 4
2x = 2 x x
3x2 = 3 x x x
4 = 2 x 2
Common factors of 2x, 3x2 and 4 is 1.
- Factors of 6abc , 24ab2and 12a2b
6abc = 2 x 3 x a x b x c
24ab2 = 2 x 2 x 2 x 3 x a x b x c
12a2b = 2x 2 x 3 x a x a x b
Common factors of 6 abc , 24ab2 and 12a2b are 2,3 , a , b and 2 x 3 x a x b = 6ab
- Factors of 16x3, -4x2 and 32x
16x3 = 2 x 2 x 2 x 2 x x x x x x
-4x2 = -1 x 2 x 2 x x x x
32x = 2 x 2 x 2 x 2 x 2 x x
Common factor of 16x3 , -4x2 and 32x are 2,2,x and 2 x 2 x x = 4x
- Factors of 10 pq, 20qr and 30rp
10pq = 2 x 5 x q x p
20qr = 2 x x 5 x q x r
30rp = 2 x 3 x 5 x r x p
Common factors of 10 pq ,, 20qr and 30rp are 2,5 and, 2 x 5 = 10
- Factors of 3x2y3, 10x3y2 and 6x2y2z
3x2y3 = 3 x x x x x y x y x y
10x3y2 = 2 x 5 x x x x x x x y x y
6x2y2z = 3 x 2 x x x x x y x y x z
Common factors of 3x2y3 , 10x3y2 and 6x2y2z are x2 , y2 and x2 x y2 = x2y2
Q2. Factorise the following expressions
- 7x – 42
- 6p – 12q
- 7a2+ 14a
- -16z + 20z3
- 20l2m + 30alm
- 5x2y – 15xy2
- 10a2– 15b2 + 20c2
- -4a2 + 4ab – 4ca
- X2yz + bxy2 + cxyz
- ax2y + bxy2+ cxyz
Solution:-
- 7x = 7 x x
42 = 2 x 3 x 7
7x – 42 = (7 x x) – (2 x 3 x 7) = 7(x – 6)
- 6p = 2 x 3 x p
12q = 2 x 3 x 2 x q
6p – 12q = (2 x 3 x p) – (2 x 2 x 3 x q)
= 2 x 3 [ p – (2 x q)]
= 6 (p – 2q)
- 7a2= 7 x a x a
14a = 7 x 2 x a
7a2 + 14 a = (7 x a x a) + (2 x 7 x a)
= 7 x a [ a +2] = 7a ( a +2)
- 16z = 2 x 2 x 2 x 2 x z
20z3 = 2x 2x 5 x z x z x z
-16z + 20z3 = -(2×2 x 2 x 2 x z) + (2 x 2 x 5 x z x z x z)
= 4z(-4 + 5z2)
- 20l2m = 2 x 2 x 5 x l x l x m
30alm = 2 x 3 x 5 x a x l x m
20l2m + 30alm = (2 x 2 x 5 x l x l x m) + (2 x 3 x 5 x a x l x m)
= 10lm (2l + 3a)
- 5x2y = 5 x x x x x y
15xy2 = 3 x 5 x x x y x y
5x2y – 15xy2 = (5 x x x x x y) – (3 x 5 x x x y x y)
= 5xy (x – 3y)
- 10a2– 15b2 + 20c
10a2 = 2 x 5 x a x a
-15b2 = -1 x 3 x 5 x bx b
20c2 = 2 x 2 x 5 x c x c
10a2 – 15b2 + 20c2 = 5(2a2 – 3b2 + 4c2)
- -4a2+ 4ab – 4ca
4a2 = -1 x 2 x 2 x a x a
4ab = 2 x 2 x a x b
4ca = -1 x 2 x 2 x c x a
-4a2 + 4ab – 4ca = 4a(-a + b – c)
- X2yz + xy2z + xyz2
X2yz = x x x x y x z
Xy2z = x x y x y x z
Xyz2 = x x y x z x z
X2yz + xy2z + xyz2 = xyz( x + y + z)
- Ax2y + bxy2+ cxyz
Ax2y = a x x x x x y
Bxy2 = b x x x y x y
Cxyz = c x x y x z
Ax2y + bxy2 + cxyz = xy (ax + by + cz)
Q3. Factorise.
- x2+ xy + 8x + 8y
- 15xy – 6x + 5y – 2
- ax + bx – ay – by
- 15pq + 15 + 9q + 25p
- Z – 7 + 7xy – xyz
Solution:-
- X2+ xy + 8x + 8y = x x x + x x y + 8 x x + 8 x y
= x(x+ y) + 8(x+ y)
= (x + y) (x + 8)
- 15xy – 6x + 5y – 2 = 3 x 5 x x x y – 3 x 2 x x + 5xy – 2
= (5y 2) (3x + 1)
- Ax + bx – ay – by = a x x + b x x- a x y -b x y
= x(a + b) -y (a + b)
= (a + b) (x – y)
- 15pq + 15 + 9q + 25p = 15pq + 9q + 25p + 15
= (5p + 3) (3q + 5)
- Z – 7 + 7xy – xyz = z – x x y x z – 7 + 7 x x x y
= (1 – xy) (z – 7)