NCERT Solutions For Class 8 MATHS Chapter – 14 Exercise – 14.4

NCERT Solutions For Class 8 Math Chapter – 14 Factorisation Exercise – 14.4

Find the correct the errors in the following mathematical statements.

  1. 4(x – 5) = 4x – 5

Solution:-

 

4(x – 5) = 4x – 20 ≠ 4x – 5 = RHS

The correct statement is 4(x – 5) = 4x – 20

 

  1. X(3x + 2) = 3x2+2

Solution:-

 

LHS = X(3X + 2) = 3x2 + 2x ≠ 3x2 + 2 = RHS

The correct solution is x(3x + 2) = 3x2 + 2x

 

  1. 2x + 3y =  5xy

Solution:-

 

LHS = 2x + 3y ≠ RHS

The correct statement is 2x + 3y = 2x + 3y

 

  1. X + 2x + 3x = 5x

Solution:-

 

LHS = x + 2x  3x = 6x ≠ RHS

The correct statement is x + 2x + 3x = 6x

 

  1. 5y + 2y + y – 7y

Solution:-

 

LHS = 5y + 2y + y – 7y  = y ≠ RHS

The correct statement is 5y + 2y + y – 7y = y

 

  1. 3x + 2x = 5x2

Solution:-

 

LHS = 3x + 2x = 5x ≠ RHS

The correct statement is 3x + 2x = 5x

 

  1. (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7

Solution:-

 

LHS = (2x)2 + 4(2x) + 7 = 4x + 8x + 7 ≠ RHS

The correct statement is (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7

  1. (2x)2+ 5x = 4x + 5x = 9x

Solution:-

 

LHS = (2x)2 + 5x = 4x + 5x ≠ 9x  ≠ RHS

The correct statement is (2x)2 + 5x = 4x2 + 6x

 

  1. (3x + 2)2= 3x2 + 6x + 4

Solution:-

 

LHS = (3x +  2)2 = (3x)2 +  22 + 2 x 2 x 3x = 9x2 + 4 + 12x ≠ RHS

The correct statement  is (3x + 2)2 = 9x2 + 4 + 12x

 

  1. Substituting x = -3 in
  • X2+ 5x + 4 gives  (-3)2 + 5(-3) + 4 = 9 + 2 + 4 = 15
  • X2– 5x + 4 gives (-3)2 – 5(-3) + 4 = 9 – 15 + 4 = -2
  • X2+ 5x gives (-3)2 + 5(-3) = -9 – 15 = -24

Solution:-

 

  • Substituting x = -3 in x2+ 5x + 4 , we have

X2 + 5x + 4 = (-3)2 + 5(-3) + 4 = 9 – 15 + 4 = -2

This is the correct answer.

 

  • Substituting x = -3 in x2+ 5x

X2 – 5x + 4 = (-3)2 +  5(-3) + 4 = 9 + 15 + 4 = 28

This is the correct answer

 

( c ) Substituting x = -3 in x2 + 5x

X2 + 5x = (-3)2 + 5(-3) = 9 – 15 = -6

This is the correct answers

 

  1. (y – 3) = y2 – 9

Solution:-

 

LHS = (y – 3)2 , which is similar to (a – b)2

Identify where (a – b)2 = a2 + b2 – 2ab

(y – 3)2 = y2 – (3)2 -2 x y x 3

= y2 + 9 – 6y ≠ y2 – 9 = RHS

The correct statement is (y – 3)2 = y2 + 9 – 6y

 

  1. (z + 5)2= z2 + 25

Solution:-

 

LHS = (z + 5)2 , which is similar to (a + b)2

Identify where (a + b)2 = a + b2 + 2ab

(z + 5)2 = z + 52 + 2 x 5 x z

= z2 + 25 + 10z ≠ z2 + 25 = RHS

The correct statement is (z + 5)2 = z2  +  25 + 10z.

 

  1. (2a + 3b)(a – b) = 2a2– 3b2

Solution:-

 

LHS = (2a + 3b)(a – b) = 2a(a – b) + 3b (a – b)

= 2a2 – 2ab + 3ab – 3b2

= 2a2 – 3b2 = RHS

The correct statement is (2a + 3b)(a – b) = 2a2 + ab – 3b2

 

  1. (a + 4)(a + 2) = a2+ 8

Solution:-

 

LHS = (a + 4)(a + 2) = a(a + 2) + 4(a + 2)

= a2 + 2a + 4a + 8

= a2 + 6a + 8 ≠ a2 + 8 = RHS

The correct statement is (a + 4)(a + 2) = a2 + 6a + 8

 

  1. (a – 4)(a -2) = a2 – 8

Solution:-

 

LHS = (a – 4)(a – 2) = a(a – 2) -4(a – 2)

= a2 – 2a – 4a + 8

= a2 – 6a + 8 ≠ a2 – 8 = RHS

The correct statement is (a – 4)(a – 2) = a2 – 6a 8

 

  1. 3x2/3x2= 0

Solution:-

 

LHS = 3x2/3x2 = 1 ≠ 0 = RHS

The correct statement is 3x2/3x2 = 1

 

  1. (3x2+ 1)/3x2 = 1+ 1 = 2

Solution:-

 

LHS = (3x2 + 1)/3x2 = (3x2/3x2) + (1/3x2) = 1 + (1/3x2) ≠2  = RHS

The correct statement is (3x2 + 1)/3x2 = 1+ (1/3x2)

 

  1. 3x/(3x + 2) = 1/2

Solution:-

 

LHS = 3x/(3x + 2) ≠ 1/2 = RHS

The correct statement is 3x/(3x + 2) = 3x/(3x+ 2)

 

  1. 3/(4x + 3) = 1/4x

Solution:-

 

LHS = 3/(4x + 3) ≠ 1/4x

The correct statement is 3/(4x + 3) = 3/(4x + 3)

 

  1. (4x + 5)/4x = 5

Solution:-

 

LHS = (4x + 5)/4x = 4x/4x + 5/4x = 1 + 5/4x ≠ 5 = RHS

The correct statement is (4x + 5)/4x = 1 + (5/4x)

 

  1. 7x + 5/5 = 7x

Solution:-

 

LHS = (7x + 5)/5 = (7x/5) + 5/5 = (7x/5) + 1 ≠ 7x = RHS

 

The correct statement is (7x + 5)/5 = (7x/5) + 1