NCERT Solutions For Class 8 Math Chapter – 14 Factorisation Exercise – 14.4
Find the correct the errors in the following mathematical statements.
- 4(x – 5) = 4x – 5
Solution:-
4(x – 5) = 4x – 20 ≠ 4x – 5 = RHS
The correct statement is 4(x – 5) = 4x – 20
- X(3x + 2) = 3x2+2
Solution:-
LHS = X(3X + 2) = 3x2 + 2x ≠ 3x2 + 2 = RHS
The correct solution is x(3x + 2) = 3x2 + 2x
- 2x + 3y = 5xy
Solution:-
LHS = 2x + 3y ≠ RHS
The correct statement is 2x + 3y = 2x + 3y
- X + 2x + 3x = 5x
Solution:-
LHS = x + 2x 3x = 6x ≠ RHS
The correct statement is x + 2x + 3x = 6x
- 5y + 2y + y – 7y
Solution:-
LHS = 5y + 2y + y – 7y = y ≠ RHS
The correct statement is 5y + 2y + y – 7y = y
- 3x + 2x = 5x2
Solution:-
LHS = 3x + 2x = 5x ≠ RHS
The correct statement is 3x + 2x = 5x
- (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7
Solution:-
LHS = (2x)2 + 4(2x) + 7 = 4x + 8x + 7 ≠ RHS
The correct statement is (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7
- (2x)2+ 5x = 4x + 5x = 9x
Solution:-
LHS = (2x)2 + 5x = 4x + 5x ≠ 9x ≠ RHS
The correct statement is (2x)2 + 5x = 4x2 + 6x
- (3x + 2)2= 3x2 + 6x + 4
Solution:-
LHS = (3x + 2)2 = (3x)2 + 22 + 2 x 2 x 3x = 9x2 + 4 + 12x ≠ RHS
The correct statement is (3x + 2)2 = 9x2 + 4 + 12x
- Substituting x = -3 in
- X2+ 5x + 4 gives (-3)2 + 5(-3) + 4 = 9 + 2 + 4 = 15
- X2– 5x + 4 gives (-3)2 – 5(-3) + 4 = 9 – 15 + 4 = -2
- X2+ 5x gives (-3)2 + 5(-3) = -9 – 15 = -24
Solution:-
- Substituting x = -3 in x2+ 5x + 4 , we have
X2 + 5x + 4 = (-3)2 + 5(-3) + 4 = 9 – 15 + 4 = -2
This is the correct answer.
- Substituting x = -3 in x2+ 5x
X2 – 5x + 4 = (-3)2 + 5(-3) + 4 = 9 + 15 + 4 = 28
This is the correct answer
( c ) Substituting x = -3 in x2 + 5x
X2 + 5x = (-3)2 + 5(-3) = 9 – 15 = -6
This is the correct answers
- (y – 3) = y2 – 9
Solution:-
LHS = (y – 3)2 , which is similar to (a – b)2
Identify where (a – b)2 = a2 + b2 – 2ab
(y – 3)2 = y2 – (3)2 -2 x y x 3
= y2 + 9 – 6y ≠ y2 – 9 = RHS
The correct statement is (y – 3)2 = y2 + 9 – 6y
- (z + 5)2= z2 + 25
Solution:-
LHS = (z + 5)2 , which is similar to (a + b)2
Identify where (a + b)2 = a2 + b2 + 2ab
(z + 5)2 = z2 + 52 + 2 x 5 x z
= z2 + 25 + 10z ≠ z2 + 25 = RHS
The correct statement is (z + 5)2 = z2 + 25 + 10z.
- (2a + 3b)(a – b) = 2a2– 3b2
Solution:-
LHS = (2a + 3b)(a – b) = 2a(a – b) + 3b (a – b)
= 2a2 – 2ab + 3ab – 3b2
= 2a2 – 3b2 = RHS
The correct statement is (2a + 3b)(a – b) = 2a2 + ab – 3b2
- (a + 4)(a + 2) = a2+ 8
Solution:-
LHS = (a + 4)(a + 2) = a(a + 2) + 4(a + 2)
= a2 + 2a + 4a + 8
= a2 + 6a + 8 ≠ a2 + 8 = RHS
The correct statement is (a + 4)(a + 2) = a2 + 6a + 8
- (a – 4)(a -2) = a2 – 8
Solution:-
LHS = (a – 4)(a – 2) = a(a – 2) -4(a – 2)
= a2 – 2a – 4a + 8
= a2 – 6a + 8 ≠ a2 – 8 = RHS
The correct statement is (a – 4)(a – 2) = a2 – 6a 8
- 3x2/3x2= 0
Solution:-
LHS = 3x2/3x2 = 1 ≠ 0 = RHS
The correct statement is 3x2/3x2 = 1
- (3x2+ 1)/3x2 = 1+ 1 = 2
Solution:-
LHS = (3x2 + 1)/3x2 = (3x2/3x2) + (1/3x2) = 1 + (1/3x2) ≠2 = RHS
The correct statement is (3x2 + 1)/3x2 = 1+ (1/3x2)
- 3x/(3x + 2) = 1/2
Solution:-
LHS = 3x/(3x + 2) ≠ 1/2 = RHS
The correct statement is 3x/(3x + 2) = 3x/(3x+ 2)
- 3/(4x + 3) = 1/4x
Solution:-
LHS = 3/(4x + 3) ≠ 1/4x
The correct statement is 3/(4x + 3) = 3/(4x + 3)
- (4x + 5)/4x = 5
Solution:-
LHS = (4x + 5)/4x = 4x/4x + 5/4x = 1 + 5/4x ≠ 5 = RHS
The correct statement is (4x + 5)/4x = 1 + (5/4x)
- 7x + 5/5 = 7x
Solution:-
LHS = (7x + 5)/5 = (7x/5) + 5/5 = (7x/5) + 1 ≠ 7x = RHS
The correct statement is (7x + 5)/5 = (7x/5) + 1