NCERT Solutions For Class 8 Maths Chapter – 14 Factorisation Exercise – 14.3
Q1. Carry out the following divisions.
- 28x4/ 56x
- -36y3/ 9y2
- 66pq2r3/ 11qr2
- 34x3y3z3/ 51xy2z3
- 12a8b8/ (-6a6b4)
Solution:-
- 28x4 = 2 x 2 x 7 x x x x x x x x
56x = 2 x 2 x 2 x 7 x x
28x4 / 56x = 2 x 2 x 7 x x x x x x x x / 2 x 2 x 2 x 7 x x
= 1/2 x3
- -36y3 / 9y2 = -2 x 2 x 3 x 3 x y x y x y/ 3 x 3 x y x y
= -4y
- 66pq2r3/ 11qr2 = 2 x 3 x 11 x p x q x q x r x r x r / 11 x q x r x r = 6pqr
- 34x3y4z3/ 51xy2z3 = 2 x 17 x x x x x x x y x y x y x z x z x z/3 x 17 x x x y x y x z x z x z
= 2/3 x2y
- 12a8b8/ (-6a6b4) = 2 x 2 x 3 x a8 x b8 / -2 x 3 x a6 x b4
= -2a2b4
Q2. Divide the given polynomial by the given monomial.
- (5x2– 6x) / 3x
- (3y8– 4y6 + 5y4) / y4
- 8(x3y2z2+ x2y3z2 +x2y2z3)/ 4x2y2z2
- (x3+ 2x2 + 3x) / 2x
- (p3q6– p6q3) / p3q3
Solution:-
- 5x2– 6x = x(5x – 6)
(5x2 – 6x) / 3x = x(5x – 6)/3x = 1/3 ( 5x – 6)
- 3y8– 4y4 + 5y4 = y4 (3y4 – 4y2 + 5)
(3y8 – 4y6 + 5y4) + y4 = y4 (3y4 – 4y2 + 5) / y4
= 3y4 – 4y2 + 5
- 8( x3y2z2+ x2y3z2 + x2y2z3) = 8x2y2z2 ( x + y + z)
= 8(x3y2z2 + x2y3z2 + x2y2z3) / 4x2y2z3
= 2(x + y + z)
- x3+ 2x2 + 3x = x(x2 + 2x + 3)
(x3+ 2x2 + 3x) / 2x = x(x3 + 2x2 + 3)/2x = 1/2 (x2 + 2x + 3)
- P3q6– p6q3 = p3q3(q3 – p3)
(p3 q6 – p6 q3) / p3q3 = p3q3(q3– p3)/p3q3 = q3 – p3
Q3. Work out the following divisions.
- (10x – 25) / 5
- (10x – 25) / (2x – 5)
- 10y (6y + 21) / 5(2y + 7)
- 9x2y2 (3z – 24) / 27xy(z – 8)
- 96abc (3a – 12) (5b – 30) / 144(a – 4) (b – 6)
Solution:-
- (10x – 25) / 5 = 5(2x – 5(/5 = 2x – 5
- (10x – 25) / (2x – 5) = 5(2x – 5)/ (2x – 5) = 5
- 10y(6y + 21) / 5(2y + 7) = 10y x 3(2y + 7)/ (2y + 7) = 6y
- 9x2y2(3z – 24) / 27xy(z – 8) = 9x2y3x 3(z – 8) / 27xy (z – 8) = xy
- 96abc(3a – 12)(5b – 30) / 144 (a- 4)/(b- 6) = 96 abc x 3(a – 4) x 5(b – 6)/144(a – 4) (b – 6) = 10abc
Q4. Divide as directed.
- 5(2x + 1)(3x + 5) / (2x + 1)
- 26xy (x + 5)(y – 4) / 13x (y – 4)
- 52pqr(p + q)(q +r)(r + p) / 104pq(q + r) (r + p)
- 20(y + 4) (y2+ 5y + 3) / 5(y + 4)
- X(x + 1) (x + 2) (x + 3) / x(x + 1)
Solution:-
- 5(2x + 1) (3x + 5) / (2x + 1) = 5(2x + 1) (3x + 5)/(2x + 1)
= 5(3x + 5)
- 26xy (x + 5) (y – 4) / 13x ( y – 4) = 2 x 13 x xy (x + 5) (y – 4)/13x (y – 4)
= 2y (x + 5)
- 52pqr ( p + q) (q + r) (r +p) / 104 pq (q + r) (r+ p)
= 2 x 2 x 13 x p x q x r x (p + q) x (q + r) x (r + p)/ 2 x2 x 2 x 13 x p x q x (q + r) x ( r + p)
= 1/2 r(p + q)
- 20 (y + 4) (y2+ 5y + 3) = 2 x 2 x 5 x (y + 4) (y2 + 5y + 3)
20 (y + 4) (y2 + 5y + 3) + 5 ( y + 4) = 2 x 2 x 5 x ( y + 4) x (y2 + 5y + 3)/ 5 x ( y + 4)
= 4(y2 + 5y + 3)
- X(x +1) (x + 2) (x + 3) / x (x + 1) = x(x + 1) (x + 2) (x+ 3) / x(x + 1)
= (x + 2) (x + 3)
Q5. Factorise the expressions and divide them as directed.
- (y2 + 7y + 10) / (y + 5)
- (m2 – 14m – 32 )/ (m + 2)
- 5p2– 25p + 20) / (p – 1)
- 4yz (z2 + 6z – 16)/ 2y (z + 8)
- 5pq (p2– q2)/ 2p (p + q)
- 12xy (9x2– 16y2) / 4xy (3x + 4y)
- 39y3(50y2 – 98 ) / 26y2 ( 5y + 7)
Solution:-
- (y2+ 7y + 10)
= y2 + 2y + 5y + 10
= y(y+2) + 5(y +2)
= (y + 2) (y + 5)
- (m2– 14m – 32)
= m2 + 2m – 16m – 32
= (m – 16) (m + 2)
- (5p2– 25p + 20)
5(p2 – 5p + 4)
= p2 – 5p + 4
= p2 – p – 4p + 4
= (p-1) (p-4)
(iv)
= z2 + 6z – 16
= z2 – 2z + 8z – 16
= (z – 2) (z + 8)
(v )
= 5pq(p2 – q2) / 2p( p + q) = 5pq (p – q) (p + q) / 2p(p + q) = 5/2q (p – q)
(vi)
= 9x2 – 16y2
= (3x)2 – (4y)2
= (3x + 4y) (3x – 4y)
(vii )
= 50y2 – 98
= 50y2 – 98 = 2(25y2 – 49 ) = 2((5y)2 – 72) = 2( 5y – 7) (5y + 7)
NCERT Solutions For Class 8 Science CHAPTER – 3