NCERT Solutions For Class 9 Math Chapter – 1 Exercise – 1.5

NCERT Solutions For Class 9 Math Chapter – 1 Exercise – 1.5

 

Q1.   Classify the following numbers as rational or irrational:

  • 2 – 5

Solution:-

 

= 2 –  2.2

= -0.2

Since the number , -0.2360679 is non terminating non – reducing 2 – √5 is an irrational number.

 

  • (3+23) – 23

Solution:-

 

3 + √23 – √23

= 3

= 3/1

Since the number 3/1 is in p/q form is rational number.

 

( c )27/77

Solution:-

 

(2/7) x (√7/√7)

(√7/√7)  = 1

Hence (2/7) x (√7 / √7)

= (2/7) x 1 = 2/7

Since the number , 2/7 is in p/q form , 2√7/7√7 is rational.

 

(iv) 1/2

Solution:-

 

(1/√2) x (√2/√2) = √2/2

 

1/√2 is an irrational number.

 

(v) 2

Solution:-

 

2 is an irrational number.

 

Q2. Simplify each of the following expressions:

  • (3+√3)(2+√2)

Solution:-

 

(3+√3)(2+√2 )

Opening the brackets, we get, (3+√3)(2+√2 )

Opening the brackets, we get, (3×2)+(3×√2)+(√3×2)+(√3×√2)

= 6+3√2+2√3+√6

(ii) (3+√3)(3-√3 )

Solution:

(3+√3)(3-√3 ) = 32-(√3)2 = 9-3

= 6

(iii) (√5+√2)2

Solution:

(√5+√2)2 = √52+(2×√5×√2)+ √22

= 5+2×√10+2 = 7+2√10

(iv) (√5-√2)(√5+√2)

Solution:

(√5-√2)(√5+√2) = (√52-√22) = 5-2 = 3

  1. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter, (say d). That is, π =c/d. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Solution:

There is no contradiction. When we measure a value with a scale, we only obtain an approximate value. We never obtain an exact value. Therefore, we may not realize whether c or d is irrational. The value of π is almost equal to 22/7 or 3.142857…

  1. Represent (√9.3) on the number line.

Solution:

Step 1: Draw a 9.3 units long line segment, AB. Extend AB to C such that BC=1 unit.

Step 2: Now, AC = 10.3 units. Let the centre of AC be O.

Step 3: Draw a semi-circle of radius OC with centre O.

Step 4: Draw a BD perpendicular to AC at point B intersecting the semicircle at D. Join OD.

Step 5: OBD, obtained, is a right angled triangle.

Here, OD 10.3/2 (radius of semi-circle), OC = 10.3/2 , BC = 1

OB = OC – BC

⟹ (10.3/2)-1 = 8.3/2

Using Pythagoras theorem,

We get,

OD2=BD2+OB2

⟹ (10.3/2)2 = BD2+(8.3/2)2

⟹ BD2 = (10.3/2)2-(8.3/2)2

⟹ (BD)2 = (10.3/2)-(8.3/2)(10.3/2)+(8.3/2)

⟹ BD2 = 9.3

⟹ BD =  √9.3

Thus, the length of BD is √9.3.

Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of √9.3 from O as shown in the figure.

 

  1. Rationalize the denominators of the following:

(i) 1/√7

Solution:

Multiply and divide 1/√7 by √7

(1×√7)/(√7×√7) = √7/7

(ii) 1/(√7-√6)

Solution:

Multiply and divide 1/(√7-√6) by (√7+√6)

[1/(√7-√6)]×(√7+√6)/(√7+√6) = (√7+√6)/(√7-√6)(√7+√6)

= (√7+√6)/√72-√62 [denominator is obtained by the property, (a+b)(a-b) = a2-b2]

= (√7+√6)/(7-6)

= (√7+√6)/1

= √7+√6

(iii) 1/(√5+√2)

Solution:

Multiply and divide 1/(√5+√2) by (√5-√2)

[1/(√5+√2)]×(√5-√2)/(√5-√2) = (√5-√2)/(√5+√2)(√5-√2)

= (√5-√2)/(√52-√22) [denominator is obtained by the property, (a+b)(a-b) = a2-b2]

= (√5-√2)/(5-2)

= (√5-√2)/3

(iv) 1/(√7-2)

Solution:

Multiply and divide 1/(√7-2) by (√7+2)

1/(√7-2)×(√7+2)/(√7+2) = (√7+2)/(√7-2)(√7+2)

= (√7+2)/(√72-22) [denominator is obtained by the property, (a+b)(a-b) = a2-b2]

= (√7+2)/(7-4)

= (√7+2)/3

= 6+3√2+2√3+√6

(ii) (3+√3)(3-√3 )

Solution:

(3+√3)(3-√3 ) = 32-(√3)2 = 9-3

= 6

(iii) (√5+√2)2

Solution:

(√5+√2)2 = √52+(2×√5×√2)+ √22

= 5+2×√10+2 = 7+2√10

(iv) (√5-√2)(√5+√2)

Solution:

(√5-√2)(√5+√2) = (√52-√22) = 5-2 = 3

  1. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter, (say d). That is, π =c/d. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Solution:

There is no contradiction. When we measure a value with a scale, we only obtain an approximate value. We never obtain an exact value. Therefore, we may not realize whether c or d is irrational. The value of π is almost equal to 22/7 or 3.142857…

  1. Represent (√9.3) on the number line.

Solution:

Step 1: Draw a 9.3 units long line segment, AB. Extend AB to C such that BC=1 unit.

Step 2: Now, AC = 10.3 units. Let the centre of AC be O.

Step 3: Draw a semi-circle of radius OC with centre O.

Step 4: Draw a BD perpendicular to AC at point B intersecting the semicircle at D. Join OD.

Step 5: OBD, obtained, is a right angled triangle.

Here, OD 10.3/2 (radius of semi-circle), OC = 10.3/2 , BC = 1

OB = OC – BC

⟹ (10.3/2)-1 = 8.3/2

Using Pythagoras theorem,

We get,

OD2=BD2+OB2

⟹ (10.3/2)2 = BD2+(8.3/2)2

⟹ BD2 = (10.3/2)2-(8.3/2)2

⟹ (BD)2 = (10.3/2)-(8.3/2)(10.3/2)+(8.3/2)

⟹ BD2 = 9.3

⟹ BD =  √9.3

Thus, the length of BD is √9.3.

Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of √9.3 from O as shown in the figure.

Ncert solutions class 9 chapter 1-21

  1. Rationalize the denominators of the following:

(i) 1/√7

Solution:

Multiply and divide 1/√7 by √7

(1×√7)/(√7×√7) = √7/7

(ii) 1/(√7-√6)

Solution:

Multiply and divide 1/(√7-√6) by (√7+√6)

[1/(√7-√6)]×(√7+√6)/(√7+√6) = (√7+√6)/(√7-√6)(√7+√6)

= (√7+√6)/√72-√62 [denominator is obtained by the property, (a+b)(a-b) = a2-b2]

= (√7+√6)/(7-6)

= (√7+√6)/1

= √7+√6

(iii) 1/(√5+√2)

Solution:

Multiply and divide 1/(√5+√2) by (√5-√2)

[1/(√5+√2)]×(√5-√2)/(√5-√2) = (√5-√2)/(√5+√2)(√5-√2)

= (√5-√2)/(√52-√22) [denominator is obtained by the property, (a+b)(a-b) = a2-b2]

= (√5-√2)/(5-2)

= (√5-√2)/3

(iv) 1/(√7-2)

Solution:

Multiply and divide 1/(√7-2) by (√7+2)

1/(√7-2)×(√7+2)/(√7+2) = (√7+2)/(√7-2)(√7+2)

= (√7+2)/(√72-22) [denominator is obtained by the property, (a+b)(a-b) = a2-b2]

= (√7+2)/(7-4)

= (√7+2)/3