NCERT Solutions For Class 9 Math Chapter – 2 Exercise – 2.2

NCERT Solutions For Class 9 Math Chapter – 2 Exercise – 2.2

 

Q1. Find the value of the polynomial (x) 5x – 4x2 + 3

  • X = 0
  • X = -1
  • X = 2

 

Solution:-

 

  • F(x) = 5x  – 4x2+ 3

When x = 0

F(0) = 5(0) – 4(0) + 3

= 3

 

  • F(x) = 5x – 4x2+ 3

F(x) = 5x – 4x2 + 3

F(-1) = 5(-1) – 4(-1)2 + 3

= -5 – 4 + 3

= -6

 

  • F(x) = 5x – 4x2+ 3

F(2) = 5(2) – 4(2)2 + 3

F = -3

 

Q2. Find p(0) , p(1) and p(2) for each of the following polynomials:

  • P(y) = y2– y + 1

Solution:-

 

P(y) = y2 – y + 1

P(0)  = (0)2 – (0) + 1  = 1

P(1)  = (1)2 – (1) + 1= 1

P(2) = (2)2 – (2) + 1 = 3

 

  • P(t) = 2 + t + 2t2 – t3

Solution:-

 

P(0) = 2 + 0 + 2(0)2 – (0)3 = 2

P(1) = 2 + 2 + 2(1)2 – (1)3 = 2 + 1 + 2 – 1 = 4

P(2) = 2 + 2 + 2(2)2 – (2)3 = 2 + 2 + 8 – 8 = 4

 

  • P(x) = x3

Solution:-

 

P(0) = (0)3 = 0

P(1) = (1)3 = 1

P(2) = (2)3 = 8

 

  • P(x) (x-1)(x+1)

Solution:-

 

P(0) = (0-1)(0+1) = (-1)(1) = -1

P(1) = (1-1)(1+1) = 0(2) = 0

P(2) = (2-1)(2+1) = 1(3) = 3

 

Q3. Verify whether the following are zeroes of the polynomial , indicated against them.

  • P(x) 3x + 1 , x = -1/3

Solution:-

 

P(-1/3) = 3(-1/3) + 1 = -1 + 1 = 0

-1/3 is a zero of p(x).

 

  • P(x) = 5x – , x = 4/5

Solution:-

 

P(4/5) = 5(4/5) = 4

4/5 is not a zero of p/(x).

 

  • P(x) = x2– 1 , x = 1 , -1

Solution:-

 

 P(1) = 12 – 1 = 1 – 1 = 0

P(-1) = (-1)2 – 1 = 1 – 1 = 0

1 , -1 are zeroes of p(x)

 

  • p(x) = (x+1)(x-2) x = -1 , 2

 

P(-1) = (-1+1)(-1-2) = (0)(-3) = 0

P(-2) = (2+1)(2-2)  = (3)(0) = 0

-1,2 are zeroes of p(x).

 

  • P(x) = x2. x = 0

Solution:-

 

P(0) = 02 = 0

0 is a zero of p(x).

 

  • P(x) /x+m , x = -m/l

Solution:-

 

P(-m/l) = l(-m/l) + m = -m + m = 0

-m/l is a zero of p(x).

 

  • P(x) = 3x2– 1 , x = -1/3 , 2/3

Solution:-

 

P(-1/√3) = 3(-1/√3)2 – 1 = 3(1/3) -1 = 1 – 1 = 0

P(2/√3) = 3(2/√3)2 – 1 = 3(4/3)  – 1 = 4 – 1 = 3

 

-1/√3 is a zero of p(x) but 2/√3 is not a zero of p(x).

 

  • P(x) 2x + 1 , x = 1/2

Solution:-

 

P(1/2) = 2(1/2) + 1 = 1 + 1 = 2

1/2 is not a zero of p(x).

 

Q4. Find the zero of the polynomial in each of the following cases:

  • P(x) x + 5

Solution:-

 

P(x) = x+ 5 = 0

X + 5 = 0

X = -5

-5 is a zero polynomial of the polynomial p(x).

 

  • P(x) – x- 5

Solution:-

 

P(x) = x – 5

X-  5 = 0

X = 5

5 is a zero polynomial of the polynomial p(x).

 

  • P(x) = 2x + 5

Solution:-

 

P(x) = 2x + 5

2x + 5 = 0

2x = -5

X = -5/2

 

X = -5/2 is a zero polynomial of the polynomial p(x).

 

  • P(x) = 3x – 2

Solution:-

 

P(x) = 3x – 2

3x – 2 = 0

3x = 2

X = 2/3

X = 2/3 is a zero polynomial of the polynomial p(x).

 

  • P(x) = 3x

Solution:-

 

P(x) = 3x

3x = 0

X= 0

0 is a zero polynomial of the polynomial p(x).

 

  • P(x) = ax , a0

Solution:-

 

P(x) = ax

Ax = 0

X = 0

0 is a zero polynomial of the polynomial p(x).

 

  • P(x) =  cx + d , c ≠ 0 c , d are real numbers.

Solution:-

 

P(x) = cx + d

Cx + d = 0

X = -d/c

X = -d/c is  a zero polynomial of the polynomial p(x).